Search results for "Critical value"
showing 10 items of 57 documents
Nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy: The effect of temperature
2011
Abstract The growth of GaN nanowires by means of plasma assisted molecular beam epitaxy directly on Si(1 1 1) has been investigated as a function of temperature. Statistical analysis of scanning electron microscopy pictures taken for different growth temperatures has revealed that density, diameter, length and length dispersion of nanowires were strongly dependent on temperature. Length dispersion, in particular, was found to be significant at high temperature. These features have been assigned to the different duration of the nucleation process with temperature, namely to the dependence with temperature of the time necessary for the size increase of the three-dimensional precursors up to a…
Stochastic analysis of the critical velocity of an axially moving cracked elastic plate
2014
In this study, a probabilistic analysis of the critical velocity for an axially moving cracked elastic and isotropic plate is presented. Axially moving materials are commonly used in modelling of manufacturing processes, like paper making and plastic forming. In such systems, the most serious threats to runnability are instability and material fracture, and finding the critical value of velocity is essential for efficiency. In this paper, a formula for the critical velocity is derived under constraints for the probabilities of instability and fracture. The significance of randomness in different model parameters is investigated for parameter ranges typical of paper material and paper machin…
Convergence of KAM iterations for counterterm problems
1998
Abstract We analyse two iterative KAM methods for counterterm problems for finite-dimensional matrices. The starting point for these methods is the KAM iteration for Hamiltonians linear in the action variable in classical mechanics. We compare their convergence properties when a perturbation parameter is varied. The first method has no fixed points beyond a critical value of the perturbation parameter. The second one has fixed points for arbitrarily large perturbations. We observe different domains of attraction separated by Julia sets.
Front propagation in the one-dimensional autocatalyticA+B→2Areaction with decay
1999
We consider front propagation in the autocatalytic scheme $A+\stackrel{\ensuremath{\rightarrow}}{B}2A,$ where we also allow the A particles to decay, $\stackrel{\ensuremath{\rightarrow}}{A}0,$ with a constant decay rate $\ensuremath{\beta}.$ In a one dimensional, discrete, situation the A domain moves as a pulse, and its dynamics differs from what is found in higher dimensions. Thus the velocity of the pulse tends to a finite value when $\ensuremath{\beta}$ approaches from below the critical value ${\ensuremath{\beta}}_{c},$ at which pulses die out. On the other hand, when approaching ${\ensuremath{\beta}}_{c}$ from above, the mean lifetime of the pulse grows as $T\ensuremath{\propto}(\ensu…
Centrifuge tests on strip footings on sand with a weak layer
2017
Tests on small-scale physical models of a strip footing resting on a dense sand bed containing a thin horizontal weak soil layer were carried out at normal gravity (1 g ). The results, reported in a companion paper, point out that the weak layer plays an important role in the failure mechanism and the ultimate bearing capacity of the footing if it falls within the ground volume relevant to the behaviour of the sand–footing system. The same problem was also investigated by means of centrifuge tests on reduced-scale models at 25 g and 40 g . The results of these tests, reported and discussed in this paper, confirm that failure mechanisms are governed substantially by the presence of the weak…
Magnetization states in ultrathin films with laterally modulated anisotropies
1998
Abstract Micromagnetic theory has been applied to a model system for ultrathin films with laterally modulated anisotropies, consisting of a periodic array of stripes with alternating uniaxial anisotropies. Despite of the discontinuous change of anisotropy, the magnetization direction only changes on a lateral scale given by the exchange length. If the width of one of the two alternating stripes is reduced below a critical value, the magnetization will switch into a uniform state. The variation of the critical width with period, anisotropy constants, exchange constant, and film thickness has been determined using an analytic approach. Non-uniform magnetization states and the magnetization re…
Depolarization Field and Properties of Thin Ferroelectric Films with Inclusion of the Electrode Effect
2005
The influence of metallic electrodes on the properties of thin ferroelectric films is considered in the framework of the Ginzburg-Landau phenomenological theory. The contribution of the electrodes with different screening lengths l s of carriers in the electrode material is included in the free-energy functional. The critical temperature T cl , the critical thickness of the film, and the critical screening length of the electrode at which the ferroelectric phase transforms into the paraelectric phase are calculated. The Euler-Lagrange equation for the polarization P is solved by the direct variational method. The results demonstrate that the film properties can be calculated by minimizing t…
The trapping condition and a new instability of the ion motion in the ion cyclotron resonance trap
1995
Abstract In analogy to the critical mass, m crit , a critical voltage, U crit , (and a general trapping parameter, π trap ) is defined, above which the ion motion in an ion cyclotron resonance (ICR) trap is unstable and the ions are lost from the trap. The theoretical values for the critical voltage are confirmed by experimental results. Singly charged gold cluster ions, Au n − , of several sizes, n = 50, 60, 76, 100, 110, and 145 (the latter corresponding to an ion mass of 28 560 u), were injected into an ICR trap, stored, and detected by axial ejection and single ion counting using a microchannel plate detector. During the storage period the trapping voltage, U , was varied for extended d…
Quantum critical point in a periodic Anderson model
2000
We investigate the symmetric Periodic Anderson Model (PAM) on a three-dimensional cubic lattice with nearest-neighbor hopping and hybridization matrix elements. Using Gutzwiller's variational method and the Hubbard-III approximation (which corresponds to the exact solution of an appropriate Falicov-Kimball model in infinite dimensions) we demonstrate the existence of a quantum critical point at zero temperature. Below a critical value $V_c$ of the hybridization (or above a critical interaction $U_c$) the system is an {\em insulator} in Gutzwiller's and a {\em semi-metal} in Hubbard's approach, whereas above $V_c$ (below $U_c$) it behaves like a metal in both approximations. These prediction…
Phase transitions in polymer blends and block copolymer melts: Some recent developments
2005
The classical concepts about unmixing of polymer blends (Flory-Huggins theory) and about mesophase ordering in block copolymers (Leibler's theory) are briefly reviewed and their validity is discussed in the light of recent experiments, computer simulations and other theoretical concepts. It is emphasized that close to the critical point of unmixing non-classical critical exponents of the Ising universality class are observed, in contrast to the classical mean-field exponents implied by the Flory-Huggins theory. The temperature range of this non-mean-field behavior can be understood by Ginzburg criteria. The latter are also useful to discuss the conditions under which the linearized (Cahn-li…